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With the gradual yet steady rise in successful 
Internet of Things (IoT) deployments, many 
paradigms associated with digital transformation 
that seek to drive concrete business outcomes 
are emerging in the industry. Among these, an 
idea gaining rapid popularity is the notion of a 
“digital twin”; in fact, Gartner has included digital 
twins in its Top 10 Strategic Technology Trends 
for 2017, 2018, and 20191 . As with popular and, 
therefore, glorified technologies, the phrase 
“digital twin” is being overused to the point that 
its underlying meaning has been diluted. An 
inevitable consequence of this overuse is that 
numerous notions of digital twins have emerged 
that tend to obscure rather than clarify the 
underlying meaning. 

As with Artificial Intelligence (AI), Machine 
Learning (ML), or Deep Learning (DL)–or even 
IoT– the underpinnings of the technologies which 
come together to create a digital twin have been 
around for a long time. It is therefore enlightening 
and useful to look back in time and trace the 
origins of digital twins, and understand their 
various manifestations over the course of the past 
four decades. Based on this understanding, we 
propose a five-level taxonomy for asset-based 
digital twins. This representation not only helps in 
classifying digital twins but 

The internet of things has ushered in an era where 

affordable sensors, ubiquitous connectivity, and 

industrial IoT platforms are all being employed to 

address concrete business needs. However, the 

fundamental underlying principle of a digital twin 

predates the era of IoT. The term “digital twin” 

itself is attributed to a presentation made by 

What is a digital twin?

Pre-IoT era

 

Due to the aforementioned confusion in the 
market, this nebulous term is defined and 
interpreted differently by multiple parties. For the 
purposes of this paper, we will simply define a 
digital twin as a virtual representation of a 
physical asset (or a system, or fleet, of assets). 
Virtual representations of a manufacturing 
process or warehouse operations are called 
process twins. Starting from such a fundamental 
definition allows us to explore the numerous 
facets and associated concepts that it can 
subsume. Needless to say, technologies such as 
AI, ML/DL, sensor, connectivity, simulation, and 
big data paradigms have led to very sophisticated 
digital twins. However, to appreciate the genesis 
of digital twins, it’s important to take a trip down 
memory lane. The emergence of IoT has brought 
about a distinct improvement in our ability to 
build comprehensive digital twins. Therefore, it is 
important to look at two timelines from the 
historical context: Pre-IoT era and IoT era.

also helps the industrial community in evaluating 
where they stand in terms of their digital
twin deployment. 

Dr. Michael Grieves in 2003 in an executive course 

on PLM2, though the concept of a digital twin long 

predates the inception of the term itself.  Perhaps 

the most illustrative example is from NASA’s 

space exploration initiatives. For most space 

missions, NASA creates an exact replica of the 

space capsule in their labs on earth, a technology 

A computer aided design (CAD) – left - and computer-aided engineering (CAE) model of a gear box–right. 
Courtesy: PTC Creo (left) and ANSYS (right)
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called “pairing,” which allowed NASA to rescue 

the Apollo 13 mission. If the real capsule in space 

encounters an issue, mission control would 

simulate the exact issue in their earth-based 

model to figure out how the issue can be 

corrected. Nowadays, with sophisticated sensors 

and communication technologies, real-time data 

is easily accessible even from outer space, but 

the digital twin idea is still crucial to NASA, and is 

still applied today, and will be in upcoming 

missions like Orion.

Traditionally, engineering design teams use 

computer-aided tools to design assets. A bicycle 

manufacturer may use Computer Aided Design (CAD), 

Computer Aided Engineering (CAE) and Computer 

Aided Manufacturing (CAM) across the entire product 

life cycle.  These representations of assets are not 

new. Early applications of CAE date back to the 

late 1960s, most notably, by Dr. Swanson who 

developed the first version of ANSYS – a CAE 

tool – in 19703. Designs of complex machines 

such as gas turbines and jet engines, internal 

combustion engines, locomotives, automobiles, 

and so on rely upon CAx technologies to limit 

costly experimentation and testing, so designers 

can improve their confidence on how the part will 

behave in the field even before building a single 

part. Such computer-aided representations, in 

addition to insights gleaned from controlled 

experiments, allow us to evaluate how the asset 

will perform in the field, as well as optimize how it 

is manufactured – thereby serving as an 

important digital twin representation of the asset. 

These form the ‘as-designed’ and ‘as-built’ digital 

representations of the asset.

CAD

Foundational building 
block of a digital twin.

Used for visual, 
assembly or kinematic 
analysis of an asset.

An important 
representation, but 
limited in use compared 
to the more sophisticated 
digital twins of today.

CAM

Simulations of the 
manufacturing process is 
also a form of digital twin 
to support manufacturing. 

Sheds light on how the part 
can be manufactured using 
a simulated assembly line. 

Also called a ‘process 
twin,’ to distinguish it from 
‘asset’ twins.

CAE

More descriptive digital 
representation for the 
digital twin.

Multi-physics/domain 
simulation model of 
the system. 

Used to evaluate how 
the product will 
perform in real-world 
operating conditions.

Enables designer to 
assess if the asset 
would live up to its design 
intent in the real world.
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Limitations of pre-IoT era digital representations

The era of IoT

While the as-designed view of the asset and 

associated insights are useful, there is seldom 

direct feedback that designers obtained about the 

assets in the field. Service engineers would 

document the failure or performance misses of 

the asset, and only in situations where there are 

recurring part issues, that information would be 

sent all the way back to the engineering design 

teams. Designers were also not aware about the 

product performance in the field – even if there 

were no failures. In other words, they seldom had 

an ‘as-used’ view of their design. Based on certain 

rules and design limitations laid out by the 

designer, the service engineer would evaluate the 

product, and, as long as any recordable readings 

of product performance were within limits, the 

product was deemed to perform as per 

design expectations.

As internet connectivity spread, humans became 

more interconnected, and thereby had access to 

more information. Cloud-hosted consumer and 

enterprise-focused applications became popular. 

Around the same time, businesses began 

exploring the benefits of machines being 

connected to each other – and, subsequently, 

also to the internet. Machines talking to 

machines, so-called M2M communication, was 

again not new; such communication was quite 

popular in the manufacturing industry. 

Connecting machines to the internet was, 

however, new. By connecting machines to the 

internet, convergence of operational technology 

and information technology became a reality. 

Product (or asset) manufacturers introduced 

sensors and connectivity mechanisms into their 

newer “smart” machines. Manufacturers created 

sensor-enabled, internet-connected boxes that 

allowed operators to connect their “dumb” 

brown-field equipment to the internet. Data 

analytics, ML and AI services moved to the cloud, 

and sensor data, performance statistics, and 

associated insights could be displayed on 

cloud-hosted dashboards. With just cellular or 

WiFi connectivity, machines deployed in the field 

could now communicate to the internet. Asset 

operators could monitor equipment performance 

from anywhere. The current IoT era was born. This 

era also led to the so-called fourth industrial 

revolution, or Industry 4.0.

Before long, service engineers began asking how 

performance data could be exploited to provide 

better customer experiences and also optimize 

after-sales service agreements. If there was no real 

need to shut down and service a machine, you didn’t 

have to! This meant no more unplanned downtimes, 

which ultimately led to improved customer 

experience. Now, IoT provided manufacturers with 

avenues to boost bottom line profits. With so much 

data – more so, in near-real time – coming from the 

machines in the field, engineers could evaluate 

whether there were anomalies in the field data and 

recommend condition-based maintenance. All of this 

data was encapsulated in a digital twin of the asset. 

Design engineers began providing design insights on 

the asset to the service engineers, and companies 

augmented the digital representation of the asset 

with physics-based models, probabilistic 

techniques, machine learning, artificial intelligence, 

and immersive visualization. Both cloud-hosted and 

on-premise applications that provided insights to 

field engineers and designers alike gained in 

popularity. In the current IoT era, such digital 

twins found a unique role in any digital 

transformation journey.  

Limitations of current IoT era digital representations

Digital twin representations in the current IoT era 

clearly are extremely useful, however, given the 

numerous flavors of digital twins, not all 

references to digital twins are consistent and 

uniform across the industry. Each variant has 

some unique limitations. Actionable insights 

associated with each of these digital twin 

representations are also very different.

For instance, a digital twin that contains only the 

CAD data model and field sensor data allows 

engineers to perform prognostics and visualize 

how the asset is performing in the field.

However, these insights are not enhanced by 

insights obtained from design of the asset. Here, 

the link between ‘as-designed’ and ‘as-used’ 

states of the asset is not complete. Even with this 

representation, however, the engineer can 
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To account for various manifestations of digital 

twins, we propose a five-level taxonomy which is 

described below. Associated with each 

classification level are the kinds of analyses that 

we can perform using the accessible data from 

each digital twin representation, and 

consequently, the kind of insights that we can 

obtain from them.

For industrial products or assets, a fundamental 

representation of a digital twin is a data model of 

the asset, which can be as simple as the CAD 

model itself. We refer to this generic description 

of the asset as a ‘data model’ in the taxonomy. 

The Level 1 representation when augmented with 

physical simulation insights such as from CAE or 

controlled lab experiments leads to a Level 2 

digital twin. A digital representation that couples 

When this representation is augmented with 

design insights, engineers gain an understanding 

from the design phase as well as from field 

A current summary view of a typical digital twin data pipeline

the sensor data from the field with the data model 

is a Level 3 digital twin. A digital twin that uses 

design insights, sensor data, asset physics, along 

with expert ‘human knowledge’ encoded into the 

digital twin, is a Level 4 digital twin representation. 

The most sophisticated digital twin in this 

taxonomy is Level 5 where the digital twin uses 

sensor data, physics-based insights and models, 

expert ‘human knowledge’ along with integration 

with enterprise systems such as Product Lifecycle 

Management (PLM), Enterprise Resource Planning 

(ERP), and Manufacturing Execution Systems 

(MES). We consider the Level 5 digital twin 

representation as the most sophisticated 

representation because it leverages information 

from multiple enterprise sources to provide a 

comprehensive view of all aspects of the asset.

determine anomalies in the sensor data and flag 

them appropriately so corrective action can be 

taken. In the absence of expert guidance or a 

thorough root cause analysis, this representation 

does not necessarily shed light on ‘why’ the 

anomaly occurred.  

performance of the assets, and therefore the link 

between the ‘as-used’ and ‘as-designed’ view of 

the asset is maintained. Clearly, this 

representation provides the engineer with a 

better ability to identify the root cause of the 

anomalies by comparing performance with design 

considerations and taking corrective action. This 

insight can impact how the asset is designed.

The five-level digital twin taxonomy

Digital Twin Engine

•  Processing & Correlation

•  Anomaly Detection

•  Data Analytics 

Sources of Data

•  Design & Manufacturing 
Data

•  Physical Data

•  Sensor Data

Insights

•  Decision Making 

•  What if Scenarios
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Analyses
The data encoded in each flavor of the digital twin 
allows the engineer to perform various analyses 
corresponding to each digital twin representation. 
As described earlier, Level 1 and Level 2 
(CAD/CAE/CAM) are already being used by 
engineering and design teams at major OEMs. In 
the Level 3 representation, the data model and 
sensor data are employed to perform regression, 
anomaly detection, and other data driven studies. 
In Level 3, the studies are primarily statistical in 
nature with seldom any input or insight provided 
from the design of the asset. The Level 4 
representation provides the engineer with an 
ability to perform a variety of insightful analyses, 
primarily because this representation is 
augmented with physics-based models and with 
knowledge gained from an expert system. This 
knowledge could be provided by service engineers 
who have learned certain asset behaviors not 
necessarily encoded in statistical or 
physics-based models, and may consist of 
region-specific or context-specific insights. This 

The five-level digital twin taxonomy with associated analyses
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LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4 LEVEL 5

Data model 

Sensor inputsData model 

Physics

Data model 

Sensor inputs

Physics

Expert system

Data model 

Sensor inputs

Physics

Expert system 

Enterprise systems

Motion 
planning, 
assembly, 

rapid 
prototyping, 

kinematic 
studies 

CAE-based 
performance 
predictions,
time-series 

analyses,
controlled 

lab-data-based 
predictions

Regression, 
anomaly 

detection,
time series 

analyses

Level 1, 2, 3 
analyses + 

probabilistic 
methods, Bayesian 

inference, AI/ML 
system simulation,
what-if scenarios,

control system 
analyses

Level 4 analyses + 
supply chain and 

procurement 
impact, product 
data & product 

lifecycle visibility, 
manufacturing 

lifecycle visibility

expert system is extremely useful in failure mode 
analyses or decision trees to track down issues 
with assets. For instance, a pump service 
engineer might have noticed over time that 
tightening a few bolts or leveling the pump 
addresses overheating issues.  This human 
knowledge can be very valuable to encode in a 
digital twin of the system that consists of the 
pump. Using this representation, one can perform 
system-level performance simulations, study 
what-if scenarios and perform system level 
optimization. Level 5 is the ideal target state of a 
complete digital twin. In addition to the Level 4 
analyses, Level 5 digital twins can be used to 
understand the impact of asset behavior and 
performance on supply chain and procurement, 
i.e. product lifecycle, and manufacturing lifecycle, 
through integration with systems that focus on 
enterprise resource planning, manufacturing 
execution, Supervisory Control and Data 
Acquisition (SCADA), customer relationship 
management, and so on. 
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Visualization techniques Business outcomes tied to 
each representationData and insights obtained from each digital twin 

representation can be visualized in a variety of 
ways. Note that the essence of a visualization 
technique is to understand the computed data 
effectively and arrive at actionable insights. A 
basic model viewer can be employed to visualize 
the Level 1 representation. A variety of 
visualization techniques can be employed to 
glean insights from Level 2 through Level 5 digital 
twins, such as 1d, 2d or 3d plots, heat maps, 
scatter plots, animations, and histograms. With 
the gaining popularity of augmented, assisted, 
and virtual reality applications, these modalities 
of data visualization are becoming a compelling 
avenue to understand sensor data. A benefit of 
these methods is that the visualization is 
immersive and data can be superposed on the 
actual asset to help service engineers address 
any performance issues in an effective manner. 
This also minimizes errors and improves 
documentation of any corrective procedures that 
are done on assets. 

The five-level digital twin taxonomy with associated business outcomes
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LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4 LEVEL 5

Data model 

Sensor inputs

Predictive and prescriptive 
asset maintenance

Data-driven product design

Closed-loop product 
lifecycle 

management

Real-time system 
optimization

Asset-as-a-service 
offerings

Real-time insights for 
improved decision making

Data model 

Physics

Data model 

Sensor inputs

Physics

Expert system

Design for 
assembly, 

manufacture, 
service

Data model 

Sensor inputs

Physics

Expert system 

Enterprise systems

Condition 
monitoring

Asset health 
(real-time)

Planned 
maintenance

Asset-as-a- 
service 

offerings

Component/
asset lifing

Performance 
predictions

Virtual testing

Closed-loop product 
and application lifecycle 

management

Design, manufacturing, 
procurement, service 
lifecycle management

Asset-as-a-service 
offerings

Associated with each representation are specific 
business outcomes that a manufacturer or asset 
operator can realize. Level 1 digital twin 
representations are used to design assets that 
can be (i) assembled (ii) manufactured and (iii) 
serviced. Level 2 digital twin representations can 
be employed to predict asset performance or 
failures during testing or in the field. The models 
developed in the design lifecycle of an asset are 
hugely beneficial in improving predictive 
capabilities of Level 4 and Level 5 digital twins. 
Since Level 3 digital representations receive 
sensor data and other performance parameters 
from the field, condition monitoring, real-time 
asset health and planned maintenance are 
potential outcomes. Tailor-made for brown-field 
equipment that has been in service for several 
years, this representation is ideal for assets 
where physics-based insights are not readily 
available. The predictive capability of such digital 
twins depends very much on the ability of the 
statistical models to capture the performance of 
the asset and trigger alerts when anomalies are 
detected. Interestingly, most digital twin offerings 
thus far tend to fall in this category.
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Looking aheadLevel 4 and 5 are similar in terms of business 
outcomes, with the latter providing an improved 
ability over the former because of the availability 
of additional knowledge sources. Since 
information is available from both the design of 
the asset as well as from the field, the asset 
operator or manufacturer has the ability to:

Although digital twins have been discoursed for 
some time now, it has definitely been popularized 
by the advent of IoT. The five-level taxonomy 
presented here provides a foundation to 
meaningfully describe the building blocks, 
features, and outcomes of each representation. 
The maturity of a digital twin deployment can be 
assessed using the classification table presented 
here, which is important because it provides an 
asset manufacturer with a reason and motivation 
to continuously improve the capability of the 
digital twin that it has created for its assets. 
Further, we believe that this digital twin taxonomy 
can help to alleviate the confusion around this 
term in the industry today, and enable both 
technology vendors and adopters to form a 
common understanding of the concept through a 
shared perspective on the hierarchy of digital twin 
levels available today.

Level 5 digital twins allow for outcomes enabled 
by closed-loop product life-cycle management, 
along with service and manufacturing life-cycle 
management. This ‘holy grail’ of digital twin 
representations allows for obtaining a holistic 
view of the asset from multiple perspectives that 
is not available in the other representations.  

•    Push the boundaries of predictive and 
prescriptive maintenance,

•    Perform system optimization with 
design insights, 

•    Build asset-as-a-service offerings, and 

•    Deliver real-time insights for improved   
decision-making.

•    Drive product design using data from the field,
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