
open source

 Jenkins
 The coded business

Jenkins is a widely used open source continuous
build and integration tool. It has over a thousand
plugins for a variety of supporting tools and
technologies and a strong community. In
Jenkins, continuous build/integration/testing or
deployment-related tasks are designed and
developed into a set of Jenkins jobs. A group
of jobs associated with a specific delivery
lifecycle of a project is called a Pipeline.
Pipelines manage the continuous delivery
lifecycle of a project.

The traditional way of implementing a pipeline
requires modification or creation of jobs using the
Jenkins console or to modify the Jenkins job
template through various custom methods. While
this method is simpler to use, it comes with
certain long-term limitations:

• Not scalable as the number of projects increase

• Concerned Ops team needs to define and
manage these templates

• No intuitive direct association or correlation of
job definitions with the respective project

• Versioning of these job definitions cannot be in
sync with the respective project versions

• Job definition ownership resides with multiple
teams (Dev and Ops)

• Complexity in pipelines results in manageability
of overheads

Jenkins: An overview

Pipeline as code

W hen a large banking services provider
was faced with a DevOps muddle,
streamlining the processes and

decentralization of tasks helped them simplify
their DevOps platform. This resulted in
considerable reduction (around 20%) of platform
maintenance overheads.

In times of agile development, DevOps has a
vital role to play. While there is no single tool
which can address all business and
development issues, there are potential
approaches that can streamline the automation
of these tasks. As enterprises grow, mundane
tasks can become maintenance nightmares.
Hence, there is a pertinent need to optimize
existing DevOps platforms to sustain the
organization’s business velocity.

 1

Pipelines evolve during the project lifecycle and
have to be managed by operations teams in
collaboration with development teams. It is a
continuous process which quickly becomes
complex as the number of dependencies for a
project increase and as the code base grows
considerably over a period of time.

Jenkins has introduced ‘Jenkinsfile’ which can be
treated as a ‘make file’ for pipeline creation and
execution, similar to ‘pom’ file for a Maven
project. All jobs that are required to be executed
for a given project can be coded into this
Jenkinsfile as Groovy statements. Moreover, this
file is versioned along with the project creating
the pipeline-as-a-code concept.

The Jenkins approach will bring agility

into pipeline management by allowing

businesses to create their own

Jenkinsfile for the pipeline plugin. This

will help them manipulate it exactly the

way they want to.

2

Success factors

In the new approach, the pipeline steps are
implemented as groovy instructions without the
need for explicitly defining the same using the
Jenkins console. This approach provides some
interesting advantages:

• Ability to define complex workflow tasks with
human interaction capabilities using simple
groovy instructions

• Complete job creation ownership resides with
the developers of the project

• Pipeline lives with the project and hence it is
version-able along with the project

• Better control of pipeline execution at runtime
with fine-grained access to each task through
groovy instructions

• Operations team needn’t manage these
pipelines anymore making the
pipeline autonomous

• Inheritance of pipelines/groovy instructions
from external sources such as files/projects

However, we have to keep in mind that the new
approach is supported only by Jenkins version
1.65 and above and is mandatory to have the
Jenkinsfile as part of every project which goes
through continuous build and delivery. Jenkinsfile
also encapsulates entire pipeline details in the
form of Groovy instructions. Furthermore, the
naming convention of the Jenkinsfile cannot be
changed, and pipeline plugins are mandatory to
leverage these features.

With the focus on microservice based
architecture, the Jenkinsfile approach gives
more control and flexibility to design a pipeline.
It also provides fine-grained control on the
usage of Jenkins slaves against a specific section
of pipeline.

The Jenkinsfile approach

On the project side, availability of a version
control system such as Github or SVN is needed.
Respective project webhooks are configured to
trigger Jenkins jobs. Git user credentials for the
corresponding project are configured in Jenkins
server by creating a file named Jenkinsfile in the
root directory of the project (alongside pom file in
java project or app.js file in a node.js project).

The pre-requisites for the Jenkins server are the
availability of pipeline, multibranch, organization
and workflow plugins pre-installed. As part of the
build process, once a commit triggers a webhook
(e.g., in GitHub), Jenkins job will be triggered.
Jenkins will look for the Jenkinsfile in the root
folder of the project. Apart from having
Jenkinsfile, there is a need to have one of the
following Jenkins jobs:

• Multibranch pipeline: To build multiple
branches of a single repository automatically

• Organization folders: To scan and discover
available repositories(e.g.Github) associated
with an enterprise and automatically creating
managed Multibranch Pipeline jobs for each of
the projects

The enhanced approach

Motivation
A project that needs to undergo continuous build
and integration processes using the Jenkinsfile
approach should have the multi-branch pipeline
job pre-created in the Jenkins server. This step
adds a dependency to the build process and then
triggers the build pipeline through the Jenkinsfile.

Approach
In order to eliminate the dependency of creating a
multi-branch step through Jenkins UI, this job is
created at runtime through Jenkins API. While
creating the main Jenkins job the subsequent
build task is passed as a parameter to the main
Jenkins job. Any parameters that are required for
the subsequent Jenkins jobs are passed as
parameters to the main Jenkins job. Within the
Jenkinsfile these job parameters can be accessed
as “${ParamName}” where ParamName is the
parameter name passed to the main Jenkins job.

Conclusion

Sreekanth Nyamars
Lead Architect - Open Source COE,
Service Transformation

Sreekanth is an Open Source Lead Architect at
Wipro. Sreekanth's focus and interests are
building solutions through the use of open source
technologies, particularly DevOps and PaaS
platforms. His experience includes the
implementation of integration platform solutions
for both large payment service providers and
telecom service providers. He is a certified Java
Enterprise Architect.

About the author

It is evident that organizations wanting to
leverage on the approach can benefit immensely.
The Jenkins approach is likely to bring in agility to
the pipeline management by allowing businesses
to create their own Jenkinsfile for the pipeline
plugin and manipulate it exactly the way they
want it. This will give more control and options
than in the UI alone. Thus, flexibility and isolation
that it offers to the project pipelines will help in
managing continuous deployments across
platforms, and create a structured way of
managing DevOps tasks in a complex
environment. Wipro’s OpenApp platform leverages
the Jenkinsfile approach to enable pipeline as a
code capability to the stacks and services
deployed on the platform.

 3

IND/BRD/JUN2017-MAY2018

Wipro Limited
Doddakannelli, Sarjapur Road,

Bangalore-560 035,

India

Tel: +91 (80) 2844 0011

Fax: +91 (80) 2844 0256

wipro.com

Wipro Limited (NYSE: WIT,

BSE: 507685, NSE: WIPRO) is

a leading global information

technology, consulting and

business process services

company. We harness the

power of cognitive computing,

hyper-automation, robotics,

cloud, analytics and emerging

technologies to help our

clients adapt to the digital

world and make them

successful. A company

recognized globally for its

comprehensive portfolio of

services, strong commitment

to sustainability and good

corporate citizenship, we

have a dedicated workforce of

over 170,000, serving clients

across six continents.

Together, we discover ideas

and connect the dots to

build a better and a bold

new future.

For more information,

please write to us at

info@wipro.com

