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Abstract
Routine inspection and maintenance of concrete 
infrastructure must be performed to ensure 
structural integrity and prevent structural failures 
which may cause damage to surrounding 
infrastructure,  environmental pollution and 
potential loss-of-life. Typically, regular visual 
inspection is conducted to identify various 
defects due to environmental exposure during the 
service life of the structure (such as cracks, loss 
of material, rusting of metal bindings, etc). Visual 
inspection can provide a wealth of information 
that may lead to positive identification of the 
cause of observed distress. However, its 
effectiveness depends on the knowledge and 
experience of the investigator and is prone to 
human error. Additionally inspection of large 
structures such as dams, bridges and tall 
buildings can be prohibitively risky and difficult 
due to hard-to-reach facets. Through this paper 
we illustrate the use of Artificial Intelligence (AI) 
techniques to automate the inspection process 
and for identification of defects (surface cracks) 
efficiently. The surface crack detection solution 
described below is designed for deployment on  
embedded platforms such as UAVs or sub-surface 
rovers and uses deep learning algorithms to 
detect and classify structural cracks on concrete 
surfaces (like pavement, walls and bridges).

Introduction
An alternative approach to manual inspection is an 
automatic crack detection system  that works by 
leveraging methods from computer vision (e.g., 
gradient thresholding and edge detection).This 
can lead to automated inspection systems which  
cater to a select set of surface types and features. 
Here, we explore the potential of a deep 
learning-based crack detection system that can 
be used on multiple surface and crack types. 

Surface Crack Detection Process
Our approach to surface crack detection has 
five stages: 

•  Annotating and labelling the images

•  Converting images into the format used 
by TensorFlow 

•  Re-training the pre-trained model with the 
new data 

•  Computing the evaluation metrics

•  Optimizing the model training (using distributed 
TensorFlow12) and inference (using the Intel® 
Distribution of OpenVINOTM toolkit)
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Convolutional Neural Networks (CNNs)5 are a class 
of deep-learning neural networks6 that are 
frequently used in image classification and 
segmentation (pixel-wise classification) tasks. 
They are known for adaptability, particularly in 
cases where the neural network topology has 
many layers, which has been shown to allow them 
to learn low-level features t(e.g., lines, edges and 
angles), and high-level features (e.g., curved 
surfaces and textures). Our approach to automatic 
crack detection leverages a topology belonging to 
this class—Faster R-CNN3 with ResNet-101 as a 
backend feature extractor, enabling it to detect 
and draw a bounding box around any crack 
identified in an image. 

To train our model, we randomly partitioned the 
SDNET20182 (refer figure 2.2 below) dataset into 
70% for training and 30% for evaluation. To 
compensate for the limited size of available 
dataset, a Faster R-CNN3 Resnet-101 model 
(pre-trained on a coco dataset4 - a large-scale 
object detection, segmentation, and captioning 
dataset) has been re-trained on all layers with our 
training dataset. Model hyper-parameters were 
fine-tuned to improve the mean average precision 
(mAP), achieving 89.11% after 15,000 iterations. 

The Intel® Distribution of OpenVINOTM1 toolkit1 has 
been used to optimize the inference time of our 
model on Intel® architectures
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2.1 Annotations and Labelling
The images were taken from SDNET20182 dataset 
having 256x256 dimensions. 

Images were annotated by drawing bounding 
boxes around any cracks which were visible in the 
images. A bounding box is a small rectangle 
enclosing the whole crack, as shown in Figure 2.3. 
Multiple bounding boxes were used when there 
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The final dataset had a total of 1,149  images 
labelled as cracks.

were more than one crack in an image. These 
annotations (the coordinates of the bounding 
boxes drawn) were stored in separate xml files for 
each individual image.
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Figure 2.1: Workflow of the Crack Detection Process

Figure 2.2: Sample Crack and Non-crack Images

Figure 2.3: Sample Crack Images with Annotations

A
nn

ot
at

ed



                            4

2.2 Generating TFRecords
Faster R-CNN3 was implemented using the Intel® 
Optimization for TensorFlow, which reads data in 
its native binary format, TFRecord. Storing data in 
a binary file format can significantly impact the 
performance of data ingestion, subsequently 
decreasing the amount of time needed to train the 
model. Since binary data takes up less space on 
disk, this approach also makes it easier to 
combine multiple datasets and integrate them 
during ingestion. Another major advantage of the 
TFRecord format is that it is possible to store 
sequence data, such as a time series or word 
encodings, in a way that allows for efficient and 
(from a coding perspective) convenient importing.

2.3 Training the Model
We started with a pre-trained Faster R-CNN with 
Resnet-101 topology (originally trained on a coco 
dataset4), re-training all layers using images from 
our dataset. Training proceeded for 15,000 
iterations using images from our dataset. Only 
parameters such as the number of classes (in our 
case, one), size (the width and height of the 
images) and the number of steps for training 
were modified in the original Intel Optimization for 
TensorFlow implementation to work on our data. 
The initial learning rate was set to the default 
0.000300000014249 and the momentum 
optimizer was used to train to convergence. While 
training, loss, accuracy, and mean Average 
Precision (mAP) across the validation set were 
monitored to determine the status of the training 
and to help avoid overfitting the model.

Faster R-CNN consists of two different 
networks—one for extracting features, and one 
for locating objects of interest—that work 
together to perform the overall task of object 
detection. It works by running an image through 
the Resnet topology to get a feature map, then 
deploys the activation map through the region 
proposal network (RPN), which outputs potential 
bounding boxes and their associated class labels 
(in the current case study, we have focused on the 
class – crack only). The RPN  network is used to 
determine which potential bounding boxes 

contain objects. This information is given to the 
detection network for determining the class of the 
object contained in the bounding box—here, 
whether it is a crack or not. 

After the training is completed, the trained model 
is converted into a frozen graph by converting the 
variables stored in the latest checkpoint file of 
the saved model into constants using the 
freezegraph library in tensorflow. The resulting 
frozen graph was used to examine inference 
performance on images that were not 
used in training.

Figure 2.4: Architecture of Faster R-CNN3 
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2.4 Compute evaluation metrics 
of the model
Object detection models are typically evaluated 
according to mAP17(mean Average Precision), 
which is calculated by taking the mean of all 
average precisions. Precision is the ratio of 
correctly predicted positive observations to the 
total predicted positive observations. Recall is the 
ratio of correctly predicted positive observations 
to the total positive observations.

Average precision (AP), then, summarizes the 
shape of the precision/recall curve (Figure 2.5) 
and is defined as the mean precision at a set of 
eleven equally spaced recall levels (0 through 1, 
in increments of 0.1). To be more precise, we 
consider a slightly corrected PR curve, where for 
each curve point (p, r), if there is a different curve 
point (p', r') such that p' > p and r' >= r, we replace 
p with maximum p' of those points.

Intersection over Union (IoU; Figure 2.6) is 
another metric used for evaluating 
segmentation models. It measures the 
overlap between two regions, indicating the 
quality of an object detector compared with 
the real object boundary. 
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TP = True positive

TN = True negative

Recall = 
TP

TP + FN

FP = False positive

FN = False negative

Class: Crack; AP = 87.36%
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 Figure 2.5: Precision /recall curve

Figure 2.6: IoU definition
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2.5 Inference Optimization using 
OpenVINOTM

To optimize model performance for inference on 
Intel® architectures, we used Intel’s OpenVINO™  
toolkit. OpenVINO™  was selected for a variety of 
reasons. First, it enables CNN-based deep 
learning inference by compressing model sizes so 

mAP is calculated by taking the mean AP over all 
classes and/or over all IoU thresholds [like 0.5, 
0.5-0.75, 0.95]. Our model achieved a mAP score 
of 89.11 with the test dataset.

The OpenVINOTM model optimizer is a 

cross-platform command-line tool that facilitates 

the transition between the training and 

deployment environment by performing analysis 

of the model, and adjusting the model for 

execution on edge devices. It produces an 

Intermediate Representation (IR) of the network 

as output that can be used by the OpenVINO™  

Inference Engine. The IR is a pair of files that 

describe the whole model—an xml file describes 

the revised network topology, and a bin file holds 

the model weights and parameters. In generating 

these, it removes layers that are only used in 

training (e.g., dropout). Moreover, if a group of 

layers can be represented as one mathematical 

operation, it recognizes this, and combines them 

together into a single layer. The result is an IR 

that has fewer layers than the original model, 

decreasing the inference time. After optimization, 

the Intermediate Representation is loaded by the 

inference engine.

that they can adequately run on low-power 
devices. Second, it supports heterogeneous 
execution across Intel® Computer Vision SDK 
accelerators, using a common API for the CPU, 
Intel® Integrated Graphics, Intel® Movidius™ 
Neural Compute Stick (NCS), Intel® Neural 
Compute Stick 2, Intel® Vision Accelerator Design 
with Intel® Movidius™ VPUs and Intel® FPGAs. 
Third, its library of computer vision functions and 
pre-optimized kernels allow us to minimize 
time-to-market. Finally, it includes optimized 
calls for CV standards, including OpenCV, 
OpenCM™, and OpenVX.

Figure 2.7: OpenVINO™  workflow for optimizing and deploying a trained deep-learning model
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Steps for optimizing and deploying a
trained model:

1. Use the OpenVINO™  model optimizer to  convert 
the frozen graph of the trained model into the 
optimized IR

2. Use the Inference Engine to evaluate the IR 
model’s predictions on a set of test images.

3. Integrate the Inference Engine into the 
production application to deploy the model in the 
target environment.

The average inference time taken for each image on 

a desktop-grade Intel® Core™ i5-3470 Processor 

and Intel® Xeon® Platinum grade Processor, with 

and without the Intel Distribution

of OpenVINOTM toolkit optimization are shown in 

Figure 2.8. As shown, the Inference Engine (using 

the intermediate representation of the model) 

makes faster predictions than the non-optimized 

inference engine on the same machine. In our 

experiment, we saw a drastic reduction of ~67% in 

inference time using the inference engine with 

OpenVINO™ optimizations on an Intel® Core™ 

i5-3470 Processor and ~53% reduction in inference 

time on an Intel® Xeon® 8153 Platinum Processsor. 



3. Performance comparison for Inference 
at the Edge 
The main motivation for us to use OpenVINO™ [1]  is 
to enable our model to be deployed onto smaller 
edge devices, which can be placed onto the UAVs. 
As a result of these optimizations, we can achieve 
better performance even on small devices, like an 
AAEON board8 with an Intel® Celeron™ N3350 
processor. We observed a performance gain of 
almost 3x using only the processor. Up Squared is 
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Since the model optimizer might remove certain 
layers and group multiple layers of the trained 
model as part of the optimization process, we 
also tried to see if these optimizations have any 
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Figure 2.9: Variation in mAP due to model optimization using OpenVINO™ 
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Figure 2.8: Inference performance metrics for OpenVINOTM optimized vs Non-optimized inference. 

Note:*Intel® Core™ i5-3470 devices  are  lower  powered  devices  that  can  be  used  as  proxy  for  edge  devices

negative impact on the overall accuracy and 
precision of the model.  Our observations showed 
a negligible decrease in the model’s overall 
accuracy and precision (Figure 2.9).

a small, portable and power-efficient board—an 
excellent option for an edge device that can be 
deployed in setups where speed can be 
compromised a little for the performance per watt 
of power. A comparison of performance on an Intel® 
IoT board with and without OpenVINO™  
optimizations is shown in Figure 3.1. 

mAP
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4. Conclusion
Through this paper and the approach discussed 
above, we have demonstrated the use of 
CNN-based deep learning inferencing on edge 
devices with Intel® Processors, for automated 
structural assessment of concrete surfaces. The 
performance results tabulated in Table 4.1 below 
demonstrate a significant performance gain with 
OpenVINO™  enabled Inference Engine across 
different form factors, ranging from an IoT device 
to a server grade set up. The performance gain 

Intel® Processors, along with inference 
optimization of OpenVINO™, combined with their 
availability in various form factors ranging from a 
small edge device to a server-grade machine, 
gives us the flexibility to deploy our solution in 
different scenarios and environments. 
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Figure 3.1: Inference Benchmark on Up Squared board with and without OpenVINOTM optimizations.

being highest, ~71%, for Inferencing at the Edge. 
The significant performance gain comes at 
negligible loss of mAP as shown in 
Figure 2.9 above.  

Inference Engine 
Deployment 

Platform

Inference Time 
(secs/image) 

Non-Optimized

Inference Time 
(secs/image) 
OpenVINO™  
Optimized

Performance
 Gain with 

OpenVINOTM

Processor Model 

Intel® Celeron
™ N3350 8.36 2.42 ~71%

~53%

~67%

0.235

0.957

0.501

2.89

Intel® Xeon® 
8153 Platinum

Intel® Core
™ i5-3470

Edge (IoT)

Server/Cloud

Desktop

Table 4.1: Inference comparison across different deployment platforms 



9                                
9                                



About the authors

Kuljeet Singh,  
has worked extensively in the IoT, mobility and 
embedded systems domains for 17 years. 
Presently a Solutions Architect (IoT & AI) with 
Wipro’s Industrial and Engineering Services 
division, he is working on the development and 
deployment of AI/ML based solutions for IoT 
domain. He is also working with the technology 
teams of a leading semiconductor customer on 
the next generation of IoT solutions. For more 
information, contact him at 
kuljeet.singh@wipro.com.

Anubhav Anand,  
is a Software Engineer at Wipro who is involved 
in the development of applications in Predictive 
Analytics, Computer Vision and NLP. He is 
interested in building the AI-powered SaaS 
products. For more information,
contact him at 
anubhav.anand1@wipro.com

Subin Guruvayurappan,  
is a Software Engineer at Wipro with 3.5 years of 
experience in various domains like machine 
learning, deep learning, computer vision, 
DevOps and MEAN stack development. He is 
also interested in AI/ML and IoT. For more 
information, contact him at 
subin.guruvayurappan@wipro.com.

                           10



11                                 

References

[1] https://software.intel.com/en-us/openvino-toolkit

[2] https://digitalcommons.usu.edu/all_datasets/48/

[3] https://arxiv.org/abs/1506.01497

[4] http://cocodataset.org/#home

[5] https://en.wikipedia.org/wiki/Convolutional_neural_network

[6] https://en.wikipedia.org/wiki/Deep_learning#Deep_neural_networks

[7] https://en.wikipedia.org/wiki/Open_MPI

[8] https://up-board.org/up/specifications/

[9] https://software.intel.com/en-us/articles/OpenVINO-ModelOptimizer

[10] https://www.open-mpi.org/doc/v2.0/man1/mpiexec.1.php

[11] https://www.ibm.com/support/knowledgecenter/SSGH2K_13.1.3/com.ibm.xlc1313.aix.doc/compiler_ref/ruomprun4.html

[12] https://www.tensorflow.org/deploy/distributed

[13] https://software.intel.com/en-us/articles/tensorflow-optimizations-on-modern-intel-architecture

[14] https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/

[15]           https://towardsdatascience.com/fasterrcnn-explained-part-1-with-code-599c16568cff

[16] https://medium.com/@timothycarlen/understanding-the-map-evaluation-metric-for-object-detection-a07fe6962cf3

[17] https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173

[18] https://www.sciencedirect.com/science/article/pii/S1110016817300236

[19] https://software.intel.com/en-us/articles/boosting-deep-learning-training-inference-performance-on-xeon-and-xeon-phi

[20]          https://medium.com/@14prakash/understanding-and-implementing-architectures-of-resnet-and-resnext-for-state-of-the-

                   art-image-cf51669e1624



IND/BRD/NOV 2019-OCT 2020

Wipro Limited
Doddakannelli, Sarjapur Road,

Bangalore-560 035, India

Tel: +91 (80) 2844 0011

Fax: +91 (80) 2844 0256

wipro.com

Wipro Limited (NYSE: WIT, 

BSE: 507685, NSE: WIPRO) is 

a leading global information 

technology, consulting and 

business process services 

company. We harness the 

power of cognitive computing, 

hyper-automation, robotics, 

cloud, analytics and emerging 

technologies to help our 

clients adapt to the digital 

world and make them 

successful. A company 

recognized globally for its 

comprehensive portfolio of 

services, strong commitment 

to sustainability and good 

corporate citizenship, we 

have over 175,000 dedicated 

employees serving clients 

across six continents. 

Together, we discover ideas 

and connect the dots to build 

a better and a bold

new future.

For more information,

please write to us at 

info@wipro.com


