
Surface Crack Detection
using Computer Vision

Powered by
Intel® AI Technologies

Abstract
Routine inspection and maintenance of concrete
infrastructure must be performed to ensure
structural integrity and prevent structural failures
which may cause damage to surrounding
infrastructure, environmental pollution and
potential loss-of-life. Typically, regular visual
inspection is conducted to identify various
defects due to environmental exposure during the
service life of the structure (such as cracks, loss
of material, rusting of metal bindings, etc). Visual
inspection can provide a wealth of information
that may lead to positive identification of the
cause of observed distress. However, its
effectiveness depends on the knowledge and
experience of the investigator and is prone to
human error. Additionally inspection of large
structures such as dams, bridges and tall
buildings can be prohibitively risky and difficult
due to hard-to-reach facets. Through this paper
we illustrate the use of Artificial Intelligence (AI)
techniques to automate the inspection process
and for identification of defects (surface cracks)
efficiently. The surface crack detection solution
described below is designed for deployment on
embedded platforms such as UAVs or sub-surface
rovers and uses deep learning algorithms to
detect and classify structural cracks on concrete
surfaces (like pavement, walls and bridges).

Introduction
An alternative approach to manual inspection is an
automatic crack detection system that works by
leveraging methods from computer vision (e.g.,
gradient thresholding and edge detection).This
can lead to automated inspection systems which
cater to a select set of surface types and features.
Here, we explore the potential of a deep
learning-based crack detection system that can
be used on multiple surface and crack types.

Surface Crack Detection Process
Our approach to surface crack detection has
five stages:

• Annotating and labelling the images

• Converting images into the format used
by TensorFlow

• Re-training the pre-trained model with the
new data

• Computing the evaluation metrics

• Optimizing the model training (using distributed
TensorFlow12) and inference (using the Intel®
Distribution of OpenVINOTM toolkit)

 2

Convolutional Neural Networks (CNNs)5 are a class
of deep-learning neural networks6 that are
frequently used in image classification and
segmentation (pixel-wise classification) tasks.
They are known for adaptability, particularly in
cases where the neural network topology has
many layers, which has been shown to allow them
to learn low-level features t(e.g., lines, edges and
angles), and high-level features (e.g., curved
surfaces and textures). Our approach to automatic
crack detection leverages a topology belonging to
this class—Faster R-CNN3 with ResNet-101 as a
backend feature extractor, enabling it to detect
and draw a bounding box around any crack
identified in an image.

To train our model, we randomly partitioned the
SDNET20182 (refer figure 2.2 below) dataset into
70% for training and 30% for evaluation. To
compensate for the limited size of available
dataset, a Faster R-CNN3 Resnet-101 model
(pre-trained on a coco dataset4 - a large-scale
object detection, segmentation, and captioning
dataset) has been re-trained on all layers with our
training dataset. Model hyper-parameters were
fine-tuned to improve the mean average precision
(mAP), achieving 89.11% after 15,000 iterations.

The Intel® Distribution of OpenVINOTM1 toolkit1 has
been used to optimize the inference time of our
model on Intel® architectures

3

2.1 Annotations and Labelling
The images were taken from SDNET20182 dataset
having 256x256 dimensions.

Images were annotated by drawing bounding
boxes around any cracks which were visible in the
images. A bounding box is a small rectangle
enclosing the whole crack, as shown in Figure 2.3.
Multiple bounding boxes were used when there

Images

Annotations

Labels

Data Set

TF Records

Convert to
TF Records

Resnet 101
Feature

Extractor

Faster
RCNN

Detector

Detection Model

Trained
Model Model

Optimizer
Inference

Engine

OpenVINOTM

Image
Prediction

Script

Text Image Predictions

.xml
.bin

The final dataset had a total of 1,149 images
labelled as cracks.

were more than one crack in an image. These
annotations (the coordinates of the bounding
boxes drawn) were stored in separate xml files for
each individual image.

IR

Figure 2.1: Workflow of the Crack Detection Process

Figure 2.2: Sample Crack and Non-crack Images

Figure 2.3: Sample Crack Images with Annotations

A
nn

ot
at

ed

 4

2.2 Generating TFRecords
Faster R-CNN3 was implemented using the Intel®
Optimization for TensorFlow, which reads data in
its native binary format, TFRecord. Storing data in
a binary file format can significantly impact the
performance of data ingestion, subsequently
decreasing the amount of time needed to train the
model. Since binary data takes up less space on
disk, this approach also makes it easier to
combine multiple datasets and integrate them
during ingestion. Another major advantage of the
TFRecord format is that it is possible to store
sequence data, such as a time series or word
encodings, in a way that allows for efficient and
(from a coding perspective) convenient importing.

2.3 Training the Model
We started with a pre-trained Faster R-CNN with
Resnet-101 topology (originally trained on a coco
dataset4), re-training all layers using images from
our dataset. Training proceeded for 15,000
iterations using images from our dataset. Only
parameters such as the number of classes (in our
case, one), size (the width and height of the
images) and the number of steps for training
were modified in the original Intel Optimization for
TensorFlow implementation to work on our data.
The initial learning rate was set to the default
0.000300000014249 and the momentum
optimizer was used to train to convergence. While
training, loss, accuracy, and mean Average
Precision (mAP) across the validation set were
monitored to determine the status of the training
and to help avoid overfitting the model.

Faster R-CNN consists of two different
networks—one for extracting features, and one
for locating objects of interest—that work
together to perform the overall task of object
detection. It works by running an image through
the Resnet topology to get a feature map, then
deploys the activation map through the region
proposal network (RPN), which outputs potential
bounding boxes and their associated class labels
(in the current case study, we have focused on the
class – crack only). The RPN network is used to
determine which potential bounding boxes

contain objects. This information is given to the
detection network for determining the class of the
object contained in the bounding box—here,
whether it is a crack or not.

After the training is completed, the trained model
is converted into a frozen graph by converting the
variables stored in the latest checkpoint file of
the saved model into constants using the
freezegraph library in tensorflow. The resulting
frozen graph was used to examine inference
performance on images that were not
used in training.

Figure 2.4: Architecture of Faster R-CNN3

proposals

Region Proposal Network

classifier

RoI pooling

features maps

conv layers

image

2.4 Compute evaluation metrics
of the model
Object detection models are typically evaluated
according to mAP17(mean Average Precision),
which is calculated by taking the mean of all
average precisions. Precision is the ratio of
correctly predicted positive observations to the
total predicted positive observations. Recall is the
ratio of correctly predicted positive observations
to the total positive observations.

Average precision (AP), then, summarizes the
shape of the precision/recall curve (Figure 2.5)
and is defined as the mean precision at a set of
eleven equally spaced recall levels (0 through 1,
in increments of 0.1). To be more precise, we
consider a slightly corrected PR curve, where for
each curve point (p, r), if there is a different curve
point (p', r') such that p' > p and r' >= r, we replace
p with maximum p' of those points.

Intersection over Union (IoU; Figure 2.6) is
another metric used for evaluating
segmentation models. It measures the
overlap between two regions, indicating the
quality of an object detector compared with
the real object boundary.

5

TP = True positive

TN = True negative

Recall =
TP

TP + FN

FP = False positive

FN = False negative

Class: Crack; AP = 87.36%

P
re

ci
si

on

Recall

 Figure 2.5: Precision /recall curve

Figure 2.6: IoU definition

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

Overlap

Union

 6

2.5 Inference Optimization using
OpenVINOTM

To optimize model performance for inference on
Intel® architectures, we used Intel’s OpenVINO™
toolkit. OpenVINO™ was selected for a variety of
reasons. First, it enables CNN-based deep
learning inference by compressing model sizes so

mAP is calculated by taking the mean AP over all
classes and/or over all IoU thresholds [like 0.5,
0.5-0.75, 0.95]. Our model achieved a mAP score
of 89.11 with the test dataset.

The OpenVINOTM model optimizer is a

cross-platform command-line tool that facilitates

the transition between the training and

deployment environment by performing analysis

of the model, and adjusting the model for

execution on edge devices. It produces an

Intermediate Representation (IR) of the network

as output that can be used by the OpenVINO™

Inference Engine. The IR is a pair of files that

describe the whole model—an xml file describes

the revised network topology, and a bin file holds

the model weights and parameters. In generating

these, it removes layers that are only used in

training (e.g., dropout). Moreover, if a group of

layers can be represented as one mathematical

operation, it recognizes this, and combines them

together into a single layer. The result is an IR

that has fewer layers than the original model,

decreasing the inference time. After optimization,

the Intermediate Representation is loaded by the

inference engine.

that they can adequately run on low-power
devices. Second, it supports heterogeneous
execution across Intel® Computer Vision SDK
accelerators, using a common API for the CPU,
Intel® Integrated Graphics, Intel® Movidius™
Neural Compute Stick (NCS), Intel® Neural
Compute Stick 2, Intel® Vision Accelerator Design
with Intel® Movidius™ VPUs and Intel® FPGAs.
Third, its library of computer vision functions and
pre-optimized kernels allow us to minimize
time-to-market. Finally, it includes optimized
calls for CV standards, including OpenCV,
OpenCM™, and OpenVX.

Figure 2.7: OpenVINO™ workflow for optimizing and deploying a trained deep-learning model

Train a Model Run Model Optimizer Inference Engine

User Application

IR

.xml
.bin

Steps for optimizing and deploying a
trained model:

1. Use the OpenVINO™ model optimizer to convert
the frozen graph of the trained model into the
optimized IR

2. Use the Inference Engine to evaluate the IR
model’s predictions on a set of test images.

3. Integrate the Inference Engine into the
production application to deploy the model in the
target environment.

The average inference time taken for each image on

a desktop-grade Intel® Core™ i5-3470 Processor

and Intel® Xeon® Platinum grade Processor, with

and without the Intel Distribution

of OpenVINOTM toolkit optimization are shown in

Figure 2.8. As shown, the Inference Engine (using

the intermediate representation of the model)

makes faster predictions than the non-optimized

inference engine on the same machine. In our

experiment, we saw a drastic reduction of ~67% in

inference time using the inference engine with

OpenVINO™ optimizations on an Intel® Core™

i5-3470 Processor and ~53% reduction in inference

time on an Intel® Xeon® 8153 Platinum Processsor.

3. Performance comparison for Inference
at the Edge
The main motivation for us to use OpenVINO™ [1] is
to enable our model to be deployed onto smaller
edge devices, which can be placed onto the UAVs.
As a result of these optimizations, we can achieve
better performance even on small devices, like an
AAEON board8 with an Intel® Celeron™ N3350
processor. We observed a performance gain of
almost 3x using only the processor. Up Squared is

7

Since the model optimizer might remove certain
layers and group multiple layers of the trained
model as part of the optimization process, we
also tried to see if these optimizations have any

4

3

2

1

0

2.89

0.957
0.501

0.235

A
ve

ra
ge

 T
im

e
(s

ec
s/

im
ag

e)

Inference

Intel® Core™ i5-3470
Processor

Non-Optimized

Intel® Core™ i5-3470
Processor OpenVINO™

Optimized

Intel® Xeon® 8153
Platinum Processor

Non-Optimized

Intel® Xeon® 8153
Platinum OpenVINO™

Optimized

Platforms

Figure 2.9: Variation in mAP due to model optimization using OpenVINO™

0 10 20 30 40 50 60 70 80 90 100

Intel® Core™ i5-3470
Processor OpenVINO™

Optimized

Intel® Core™
i5-3470 Processor

Non-Optimized

Variation in mAP

89.11

89.24

Figure 2.8: Inference performance metrics for OpenVINOTM optimized vs Non-optimized inference.

Note:*Intel® Core™ i5-3470 devices are lower powered devices that can be used as proxy for edge devices

negative impact on the overall accuracy and
precision of the model. Our observations showed
a negligible decrease in the model’s overall
accuracy and precision (Figure 2.9).

a small, portable and power-efficient board—an
excellent option for an edge device that can be
deployed in setups where speed can be
compromised a little for the performance per watt
of power. A comparison of performance on an Intel®
IoT board with and without OpenVINO™
optimizations is shown in Figure 3.1.

mAP

 8

4. Conclusion
Through this paper and the approach discussed
above, we have demonstrated the use of
CNN-based deep learning inferencing on edge
devices with Intel® Processors, for automated
structural assessment of concrete surfaces. The
performance results tabulated in Table 4.1 below
demonstrate a significant performance gain with
OpenVINO™ enabled Inference Engine across
different form factors, ranging from an IoT device
to a server grade set up. The performance gain

Intel® Processors, along with inference
optimization of OpenVINO™, combined with their
availability in various form factors ranging from a
small edge device to a server-grade machine,
gives us the flexibility to deploy our solution in
different scenarios and environments.

10

8

6

4

2

0

8.36

2.42

Ti
m

e
Ta

ke
n

(S
ec

s/
im

ag
e)

Up Squared Inference Benchmark

Inference

Non-Optimized OpenVINOTM optimized

Figure 3.1: Inference Benchmark on Up Squared board with and without OpenVINOTM optimizations.

being highest, ~71%, for Inferencing at the Edge.
The significant performance gain comes at
negligible loss of mAP as shown in
Figure 2.9 above.

Inference Engine
Deployment

Platform

Inference Time
(secs/image)

Non-Optimized

Inference Time
(secs/image)
OpenVINO™
Optimized

Performance
 Gain with

OpenVINOTM

Processor Model

Intel® Celeron
™ N3350 8.36 2.42 ~71%

~53%

~67%

0.235

0.957

0.501

2.89

Intel® Xeon®
8153 Platinum

Intel® Core
™ i5-3470

Edge (IoT)

Server/Cloud

Desktop

Table 4.1: Inference comparison across different deployment platforms

9
9

About the authors

Kuljeet Singh,
has worked extensively in the IoT, mobility and
embedded systems domains for 17 years.
Presently a Solutions Architect (IoT & AI) with
Wipro’s Industrial and Engineering Services
division, he is working on the development and
deployment of AI/ML based solutions for IoT
domain. He is also working with the technology
teams of a leading semiconductor customer on
the next generation of IoT solutions. For more
information, contact him at
kuljeet.singh@wipro.com.

Anubhav Anand,
is a Software Engineer at Wipro who is involved
in the development of applications in Predictive
Analytics, Computer Vision and NLP. He is
interested in building the AI-powered SaaS
products. For more information,
contact him at
anubhav.anand1@wipro.com

Subin Guruvayurappan,
is a Software Engineer at Wipro with 3.5 years of
experience in various domains like machine
learning, deep learning, computer vision,
DevOps and MEAN stack development. He is
also interested in AI/ML and IoT. For more
information, contact him at
subin.guruvayurappan@wipro.com.

 10

11

References

[1] https://software.intel.com/en-us/openvino-toolkit

[2] https://digitalcommons.usu.edu/all_datasets/48/

[3] https://arxiv.org/abs/1506.01497

[4] http://cocodataset.org/#home

[5] https://en.wikipedia.org/wiki/Convolutional_neural_network

[6] https://en.wikipedia.org/wiki/Deep_learning#Deep_neural_networks

[7] https://en.wikipedia.org/wiki/Open_MPI

[8] https://up-board.org/up/specifications/

[9] https://software.intel.com/en-us/articles/OpenVINO-ModelOptimizer

[10] https://www.open-mpi.org/doc/v2.0/man1/mpiexec.1.php

[11] https://www.ibm.com/support/knowledgecenter/SSGH2K_13.1.3/com.ibm.xlc1313.aix.doc/compiler_ref/ruomprun4.html

[12] https://www.tensorflow.org/deploy/distributed

[13] https://software.intel.com/en-us/articles/tensorflow-optimizations-on-modern-intel-architecture

[14] https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/

[15] https://towardsdatascience.com/fasterrcnn-explained-part-1-with-code-599c16568cff

[16] https://medium.com/@timothycarlen/understanding-the-map-evaluation-metric-for-object-detection-a07fe6962cf3

[17] https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173

[18] https://www.sciencedirect.com/science/article/pii/S1110016817300236

[19] https://software.intel.com/en-us/articles/boosting-deep-learning-training-inference-performance-on-xeon-and-xeon-phi

[20] https://medium.com/@14prakash/understanding-and-implementing-architectures-of-resnet-and-resnext-for-state-of-the-

 art-image-cf51669e1624

IND/BRD/NOV 2019-OCT 2020

Wipro Limited
Doddakannelli, Sarjapur Road,

Bangalore-560 035, India

Tel: +91 (80) 2844 0011

Fax: +91 (80) 2844 0256

wipro.com

Wipro Limited (NYSE: WIT,

BSE: 507685, NSE: WIPRO) is

a leading global information

technology, consulting and

business process services

company. We harness the

power of cognitive computing,

hyper-automation, robotics,

cloud, analytics and emerging

technologies to help our

clients adapt to the digital

world and make them

successful. A company

recognized globally for its

comprehensive portfolio of

services, strong commitment

to sustainability and good

corporate citizenship, we

have over 175,000 dedicated

employees serving clients

across six continents.

Together, we discover ideas

and connect the dots to build

a better and a bold

new future.

For more information,

please write to us at

info@wipro.com

