
 How to model
 microservices?

Deployment modeling and optimization
process for digital enterprises

n a typical digital transformation program, the
number of microservices grows within a range of
500 to 1000. This huge growth in microservices

affects infrastructure and capacity planning, and
defining a scalable model becomes complex. In
addition to this, driving optimization in IT
infrastructure gets more challenging.

In traditional application capacity sizing, many
vendors provide references on the capacity of
application servers, with optimal performance
KPIs using lab tests. For example, an application
server can perform with a throughput of 1000
Transaction Per Second (TPS) with moderate
processing complexity-with two quad core CPUs,
two GB heap size. Many enterprises follow this
method for determining the initial sizes for
application servers. Some enterprises use
performance-testing outputs to validate and
re-size the production systems.

When it comes to microservices, especially with
cloud container technologies, there are not many
such standards or benchmarks readily available
for capacity planning or sizing.

Many architects/designers use random methods
to size the components. In many cases,
microservices instances are oversized, needing
large CPU and memory requirements for
infrastructures. Hence, including deployment
modeling and optimization process during the
early test cycles of microservices is essential.

I

Microservices deployment modeling and
its benefits

Microservices component deployment
modeling process

Deployment modeling is a process of right sizing
and tuning Java Virtual Machine (JVM) heap sizes
(like old gen space, eden space, native space),
garbage collection policy, thread pool size,
thread stack size, connection pool sizes etc.
And identifying the optimal capacity of a single
microservices component for a given environment
configuration.

It is important to include the microservices
component deployment modeling plan as part of
the overall digital project planning. Modeling is
similar to performance testing: it focuses more on
identifying the maximum capacity of a single
component with optimal performance and optimal
memory sizing.

Some of the key benefits of microservices
deployment modeling include:

The following guidelines are suggestions to aid
deployment modeling of a single microservices
component: use these steps as a reference and
not as an industry standard.

To begin with, start with a small set of
microservices components to model and baseline
the performance. Later on, develop the capability
to automate this exercise wherever possible as a
continuous testing and modeling process. Use
this method for all existing and upcoming
microservices components.

Optimal performance of given
containers due to right sizing of
individual microservices component

Cost reduction by defining the right
number of microservices instances for
a given load

Early detection of potential
performance improvements and
bottlenecks

Improved response time of
microservices APIs thus enhancing
end-user experience

Improved code quality and
performance of software

Reduced performance testing effort

Reduced performance incidents post
production release

IT resource optimization

 2

3

• Setup a dedicated environment space for
 modeling single microservices components

• Identify key microservices functions and
 develop testing scripts (similar to performance
 test scripts)

• In cases where host systems are not available
 in the modeling environment, use service
 virtualization tools for simulating host
 responses. Induce possible delays in
 simulation tools to mimic production scenarios

• Define SLA for microservices

• Determine the right mix of API load as per
 production scenario for testing

• For baselining the microservices KPIs, test
 with twice the expected production
 volume for catering to failover, disaster
 recovery or cloud bursting scenarios

• Test early and test often for consistent results

• Conduct a constant load test on a single
 container of a long duration cycle (8 to 12
 hours) to identify and fix memory leak issues

• Identify right values for JVM tunable
 parameters (thread size, pools, heap sizes, old
 gen, eden space etc)

• Establish performance baseline for single
 container e.g. ‘single’ login microservices
 component of 500 MB size can sustain 20 TPS
 of load while meeting all required SLAs

• While calculating production sizing, add
 appropriate contingency factors from the lab
 results as there could be unknown factors that
 could hinder the performance in a production
 environment e.g. If optimal capacity of ‘login’
 microservices component in lab test is 20 TPS,
 then for production sizing consider the optimal
 capacity as 15 TPS

• Repeat this process on every major
 releases/code changes on the component.
 Compare results with previous releases for any
 performance degradation

• Include modeling and baselining as a standard
 process for new microservices components so
 that right-sizing and tuning of a component is
 done before performance testing and
 production deployment

Dependencies: Microservices deployment
modeling requires the support of good application
monitoring and log monitoring tools with detailed
tracing capabilities to measure component KPIs.
In most cases, such tools may already exist in
an enterprise.

Value realization for deployed components

Identify opportunities to reduce the oversized
containers in production. For example, let us
assume that in production we have a ‘login’
microservice with 2 gb container heap size for
handling a load of 10 TPS. Modeling exercise was
not carried out on this login service previously.
Now, after the modeling process in the lab, we
find that ‘login’ microservice can handle 15
requests at a time (20 TPS) with only 500 mb
container heap size. This means that the existing
production container of 2 gb heap is oversized.
The heap size should be reduced to 500 mb to
handle the required load of 10 TPS. This will bring
down memory footprint from 2 gb to 500 mb,
saving 1.5 gb per container. The memory savings
will be substantial if there are more of such
oversized containers in production.

Microservices deployment modeling process can
be well integrated with DevOps process, where
this activity can be planned in parallel with any
development/test cycles of a sprint.

The digital now

Although application performance baselining or
modeling has been known since the early IT
revolution, its applicability in modern digital
enterprises is still not very common. It requires a
well-defined strategy, management focus,
detailed process and most importantly, patience
to implement it. Once the people, processes and
environments are established, the benefits
are manifold.

Sandeep Tol
Senior Architect, Strategy Consulting and
Architecture division, Wipro Limited

Sandeep has 19 years of IT experience in
architecture, design and implementation across
the breadth of Cloud, microservices, application
and SOA integration areas. In his current role, he
is helping large clients in reviewing microservices
architectures and building shared microservices
models.

About the author

IND/BRD/JAN 2018-DEC 2017

Wipro Limited
Doddakannelli, Sarjapur Road,

Bangalore-560 035, India

Tel: +91 (80) 2844 0011

Fax: +91 (80) 2844 0256

wipro.com

Wipro Limited (NYSE: WIT,

BSE: 507685, NSE: WIPRO) is

a leading global information

technology, consulting and

business process services

company. We harness the

power of cognitive computing,

hyper-automation, robotics,

cloud, analytics and emerging

technologies to help our

clients adapt to the digital

world and make them

successful. A company

recognized globally for its

comprehensive portfolio of

services, strong commitment

to sustainability and good

corporate citizenship, we

have over 160,000 dedicated

employees serving clients

across six continents.

Together, we discover ideas

and connect the dots to build

a better and a bold

new future.

For more information,

please write to us at

info@wipro.com

