
Optimizing
Information
Retrieval
Exploring Google Cloud's RAG
API for Advanced RAG Pipelines

February 2025

Steps to implement RAG application using the RAG API

with Vertex AI Vector Search

Let's use an illustrative example of a multi-cloud enterprise environment, where a substantial

team of engineers required effective technical support to address diverse queries and issues. To

meet this demand, a Retrieval-Augmented Generation (RAG) pipeline can be implemented,

leveraging the RAG API to provide contextual technical answers by referencing a knowledge

corpus encompassing historical incidents, FAQ documentation, video transcripts, and

StackOverflow.

Step 1: Choose the Vector Database: The RAG Engine
offers RagManagedDb as the default choice of a vector database, with the
option to add additional Vector Databases. Experimenting with Vector AI
Search, based on vector search technology developed by Google Research,
was chosen for this implementation.

Step 2: Set up Vertex AI SDK: Before proceeding, install and configure the

Vertex AI SDK to enable seamless integration with the RAG API and Vertex AI

Vector Search:

pip install google-cloud-aiplatform

Set up the SDK

aiplatform.init(project="your-project-id",
location="your-region")

Ensure that you’ve set up authentication with Google Cloud and have the

necessary permissions for Vertex AI and Matching Engine services.

Step 3: Create a Vector Search Index: A Vector Search index is where vector

embeddings will be stored and queried. Criteria such as an empty Vector

Search index, IndexUpdateMethod, distance measure type, and vector

dimension must be met to ensure compatibility for similarity comparison.

To create a Vector Search index, following criteria must be met:

IndexUpdateMethod should be set to STREAM_UPDATE that allows to

update and query the index in real time.

The distance measure type must be either DOT_PRODUCT_DISTANCE or
COSINE_DISTANCE.

The vector dimension should match that of the embedding model used for the

RAG corpus. This ensures the embeddings are compatible for similarity

comparison. The code snippet is as follows:

Join Us in Revolutionizing Travel: Embrace the future of travel with our In-Vehicle Passenger
Profiling System. Enhance every journey with personalized experiences that cater to the
unique needs and preferences of each passenger, transforming your vehicle into a haven of
comfort and safety.

For more information and to schedule a demo, please contact dipankar.maitra@wipro.com.

def vector_search_create_streaming_index(

 project: str, location: str, display_name: str, gcs_uri: Optional[str] = None

) -> aiplatform.MatchingEngineIndex:

 """Create a vector search index.

 Args:

 project (str): Required. Project ID

 location (str): Required. The region name

 display_name (str): Required. The index display name

 gcs_uri (str): Optional. The Google Cloud Storage uri for index content

 Returns:

 The created MatchingEngineIndex.

 """

 # Initialize the Vertex AI client

 aiplatform.init(project=project, location=location)

 # Create Index

 index = aiplatform.MatchingEngineIndex.create_tree_ah_index(

 display_name=display_name,

 contents_delta_uri=gcs_uri,

 description="Matching Engine Index",

 dimensions=100,

 approximate_neighbors_count=150,

 leaf_node_embedding_count=500,

 leaf_nodes_to_search_percent=7,

 index_update_method="STREAM_UPDATE", # Options: STREAM_UPDATE, BATCH_UPDATE

distance_measure_type=aiplatform.matching_engine.matching_engine_index_config.DistanceMeasureTy
pe.DOT_PRODUCT_DISTANCE,

)

 return index

Note: RAG API uses text-embedding-004 model as a default embedding model.

Step 4: Create a Vector Search Index Endpoint: The endpoint provides a

public-facing access point to your vector search index, allowing for easy

retrieval of relevant contexts based on user queries. The code snippet is as

follows:

mailto:dipankar.maitra@wipro.com

def vector_search_create_index_endpoint(
 project: str, location: str, display_name: str

) -> None:
 """Create a vector search index endpoint.

 Args:
 project (str): Required. Project ID
 location (str): Required. The region name
 display_name (str): Required. The index endpoint display name
 """
 # Initialize the Vertex AI client
 aiplatform.init(project=project, location=location)

 # Create Index Endpoint
 index_endpoint = aiplatform.MatchingEngineIndexEndpoint.create(
 display_name=display_name,
 public_endpoint_enabled=True,
 description="Matching Engine Index Endpoint",
) I don't think we want, as a company/team, to start listing individual team leaders on the website beyond

the Board and Executive Leadership. We'll open up the floodgates to every group wanting photos and titles
(WEF, Consulting, Cloud.....) and we'll constantly be changing them, updating photos, etc etc

 print(index_endpoint.name)

Note: Use a descriptive display_name to help identify your endpoint in the Vertex AI console. Once the index is

created, deploy it to an endpoint for public-facing access.

Step 5: Deploy the Index to the Endpoint: To enable nearest neighbour search,

the index must be deployed to the endpoint for public-facing access, enabling

efficient retrieval of relevant contexts.

def vector_search_deploy_index(
 project: str,
 location: str,
 index_name: str,
 index_endpoint_name: str,
 deployed_index_id: str,

) -> None:
 """Deploy a vector search index to a vector search index endpoint.

 Args:
 project (str): Required. Project ID
 location (str): Required. The region name
 index_name (str): Required. The index to update. A fully-qualified index
 resource name or a index ID. Example:
 "projects/123/locations/us-central1/indexes/my_index_id" or
 "my_index_id".
 index_endpoint_name (str): Required. Index endpoint to deploy the index
 to.
 deployed_index_id (str): Required. The user specified ID of the
 DeployedIndex.
 """
 # Initialize the Vertex AI client
 aiplatform.init(project=project, location=location)

 # Create the index instance from an existing index
 index = aiplatform.MatchingEngineIndex(index_name=index_name)

 # Create the index endpoint instance from an existing endpoint.
 index_endpoint = aiplatform.MatchingEngineIndexEndpoint(
 index_endpoint_name=index_endpoint_name
)

Step 6: Create the RAG Corpus: Create the RAG corpus and associate it with

the Vector Search instance as the Vector database, ensuring the necessary

validations are performed to ensure correct setup.

Specify INDEX_ENDPOINT_NAME and INDEX_NAME while creating the corpus.

 # Deploy Index to Endpoint
 index_endpoint = index_endpoint.deploy_index(
 index=index, deployed_index_id=deployed_index_id
)

 print(index_endpoint.deployed_indexes)

Note: The first deployment may take up to 30 minutes.

from vertexai.preview import rag
import vertexai

TODO(developer): Update and un-comment below lines
PROJECT_ID = "your-project-id"
vector_search_index_name = "projects/{PROJECT_ID}/locations/{LOCATION}/indexes/{INDEX_ID}"
vector_search_index_endpoint_name =
"projects/{PROJECT_ID}/locations/{LOCATION}/indexEndpoints/{INDEX_ENDPOINT_ID}"
display_name = "test_corpus"
description = "Corpus Description"

Initialize Vertex AI API once per session
vertexai.init(project=PROJECT_ID, location="us-central1")

Configure embedding model (Optional)
embedding_model_config = rag.EmbeddingModelConfig(
 publisher_model="publishers/google/models/text-embedding-004"

)

Configure Vector DB
vector_db = rag.VertexVectorSearch(
 index=vector_search_index_name, index_endpoint=vector_search_index_endpoint_name

)

corpus = rag.create_corpus(
 display_name=display_name,
 description=description,
 embedding_model_config=embedding_model_config,
 vector_db=vector_db,

)
print(corpus)
Example response:
RagCorpus(name='projects/1234567890/locations/us-central1/ragCorpora/1234567890',
display_name='test_corpus', description='Corpus Description', embedding_model_config=...
...

Step 7: Import Files into the RAG Corpus: Using the ImportRagFiles API,
import documents from Cloud Storage or Google Drive into the Vector Search
index that will form the corpus, allowing for easy retrieval and embedding of
documents. The code snippet is as follows:

Step 8: Retrieve Relevant Contexts using RAG API: After importing the
documents, relevant contexts can be retrieved using the
RetrieveContexts API, allowing the RAG application to access semantic
information stored in the index for answering specific queries. The code
snippet is as follows:

from vertexai.preview import rag
import vertexai

TODO(developer): Update and un-comment below lines
PROJECT_ID = "your-project-id"
corpus_name = "projects/{PROJECT_ID}/locations/us-central1/ragCorpora/{rag_corpus_id}"
paths = ["https://drive.google.com/file/123", "gs://my_bucket/my_files_dir"] # Supports Google Cloud
Storage and Google Drive Links

Initialize Vertex AI API once per session
vertexai.init(project=PROJECT_ID, location="us-central1")

response = rag.import_files(
 corpus_name=corpus_name,
 paths=paths,
 chunk_size=512, # Optional
 chunk_overlap=100, # Optional
 max_embedding_requests_per_min=900, # Optional

)
print(f"Imported {response.imported_rag_files_count} files.")
Example response:
Imported 2 files.

from vertexai.preview import rag
import vertexai

TODO(developer): Update and un-comment below lines
PROJECT_ID = "your-project-id"
corpus_name = "projects/[PROJECT_ID]/locations/us-central1/ragCorpora/[rag_corpus_id]"

Initialize Vertex AI API once per session
vertexai.init(project=PROJECT_ID, location="us-central1")

response = rag.retrieval_query(
 rag_resources=[
 rag.RagResource(
 rag_corpus=corpus_name,
 # Optional: supply IDs from ̀ rag.list_files()`.
 # rag_file_ids=["rag-file-1", "rag-file-2", ...],
)
],
 text="Hello World!",
 similarity_top_k=10, # Optional
 vector_distance_threshold=0.5, # Optional

)
print(response)
Example response:
contexts {
contexts {
source_uri: "gs://your-bucket-name/file.txt"
text: "....
....

Step 9: Generate Content Using Vertex AI Gemini models: Make a call to the
Vertex AI GenerateContent API, specifying the RAG_CORPUS_RESOURCE
in the request to generate content using Generative AI models like Gemini.

From vertexai.preview import rag
from vertexai.preview.generative_models import GenerativeModel, Tool
import vertexai

TODO(developer): Update and un-comment below lines
PROJECT_ID = “your-project-id”
corpus_name = “projects/{PROJECT_ID}/locations/us-central1/ragCorpora/{rag_corpus_id}”

Initialize Vertex AI API once per session
vertexai.init(project=PROJECT_ID, location=”us-central1”)

rag_retrieval_tool = Tool.from_retrieval(
 retrieval=rag.Retrieval(
 source=rag.VertexRagStore(
 rag_resources=[
 rag.RagResource(
 rag_corpus=corpus_name,
 # Optional: supply IDs from ̀ rag.list_files()`.
 # rag_file_ids=[“rag-file-1”, “rag-file-2”, …],
)
],
 similarity_top_k=3, # Optional
 vector_distance_threshold=0.5, # Optional
),
)

)

rag_model = GenerativeModel(
 model_name=”gemini-1.5-flash-001”, tools=[rag_retrieval_tool]

)
response = rag_model.generate_content(“Why is the sky blue?”)
print(response.text)
Example response:
The sky appears blue due to a phenomenon called Rayleigh scattering.
Sunlight, which contains all colors of the rainbow, is scattered
by the tiny particles in the Earth’s atmosphere….
…

Conclusion

The process of implementing Retrieval-Augmented Generation (RAG) pipelines with
Google Cloud’s RAG API demonstrates the utilization of advanced AI capabilities. By
integrating the Vertex AI SDK and establishing a Streaming Vector Search index,
organizations can effectively engage with the RAG Engine to store and retrieve vector
embeddings. Deploying the index to a public-facing endpoint enables seamless access
to the vector search index, facilitating the retrieval of relevant contexts. Additionally, the
RAG API's capability to deliver detailed and contextually relevant responses to user
queries, along with its robust management and embedding of content for retrieval,
showcases its advanced functionality and potential to enhance information retrieval and
content generation processes through generative models like Gemini.

Sample query and response from RAG API
Question: Why do I get a "curl: (6) Could not resolve host" or "ERR_NAME_NOT_RESOLVED"
error when I try to access my website on Lightsail?

Model Response:

"""The errors "curl: (6) Could not resolve host" or "ERR_NAME_NOT_RESOLVED" mean your

browser can't find your website's IP address. Here's how to troubleshoot:

1. **Check Domain Registration and Nameservers:**

 - Use `whois your_domain` to check if your domain is registered.

 - Use `dig your_domain NS` or `whois your_domain | grep "Name Server"` to verify the

nameservers are correct. Update them with your registrar if needed.

2. **Check if the Issue Is Local or Global:**

 - Try accessing your website from another network or device. If it works, the problem is with

your local network or machine.

 - **Verify resolver configuration:** Check your local DNS resolver settings. On Windows,

use `ipconfig /all`. On macOS or Linux, check `/etc/resolv.conf`. Ensure the DNS servers listed

are correct and responsive.

3. **Check Hosts File:**

 - Incorrect entries in your hosts file (Windows: `C:\Windows\System32\drivers\etc\hosts`,

macOS/Linux: `/etc/hosts`) can cause this error. Verify the entry for your domain has the

correct IP address, or remove/comment it out if incorrect or unnecessary.

4. **Update Nameserver or Register Domain:**

 - If the domain is unregistered, register it and enter the nameservers provided by your

hosting provider or DNS service.

 - If the nameservers are incorrect, update them with your domain registrar.

5. **Configure A Record:**

 - If the `dig +trace` command reaches your nameserver but doesn't return an A record (IP

address), create or update the A record in your DNS settings (e.g. Lightsail DNS zone) to point

to your instance's public IP address.

6. **Check Firewall Rules:**

 - Ensure your firewall allows inbound traffic on ports 80 (HTTP) and 443 (HTTPS). Check

both Lightsail firewall rules and operating system-level firewalls (like UFW or iptables).

7. **Check Instance Health:**

 - If you get "connection timed out" errors, check your Lightsail instance's health and

performance metrics to rule out server-side issues.

Advancing RAG
Performance: A
Comparative
Evaluation of
RAG API and
Traditional RAG
Approach
The evaluation of the RAG
pipeline implementation using
the RAG API and the traditional
RAG approach revealed that
the RAG API provided better
Retriever and Generation
metric scores, showcasing its
robustness and improved
performance. The Retriever
functionality is made robust in
RAG API that brings the
google-quality search through
Vertex AI Vector Search that
delivers more relevant results
from the content provided.
This is made available in a
configurable way wherein; we
can operationalize the
repeatability of RAG
implementation for successive
use cases.

RAG API Traditional RAG

Output:

RAGResults

(

 4 RAG results,

 Metrics:

 {

 "overall_metrics": {

 "precision": 62.0,

 "recall": 47.8,

 "f1": 51.7

 },

 "retriever_metrics":
{

 "claim_recall":
73.4,

 "context_precision
": 90.0

 },

 "generator_metrics":
{

 "context_utilizati
on": 61.7,

 "noise_sensitivity
_in_relevant": 24.0,

 "noise_sensitivity
_in_irrelevant": 0.0,

 "hallucination":
14.1,

 "self_knowledge":
6.2,

 "faithfulness":
79.7

 }

 }

)

Output:

RAGResults

(

 4 RAG results,

 Metrics:

 {

 "overall_metrics": {

 "precision": 67.1,

 "recall": 43.5,

 "f1": 52.2

 },

 "retriever_metrics":
{

 "claim_recall":
26.2,

 "context_precision
": 60.0

 },

 "generator_metrics":
{

 "context_utilizati
on": 93.9,

 "noise_sensitivity
_in_relevant": 5.6,

 "noise_sensitivity
_in_irrelevant": 6.2,

 "hallucination":
21.1,

 "self_knowledge":
36.9,

 "faithfulness":
42.0

 }

 }

)

	Slide 1
	Slide 2: Steps to implement RAG application using the RAG API with Vertex AI Vector Search Let's use an illustrative example of a multi-cloud enterprise environment, where a substantial team of engineers required effective technical support to address di
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Sample query and response from RAG API Question: Why do I get a "curl: (6) Could not resolve host" or "ERR_NAME_NOT_RESOLVED" error when I try to access my website on Lightsail?
	Slide 9: Advancing RAG Performance: A Comparative Evaluation of RAG API and Traditional RAG Approach

