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Steps to implement RAG application using the RAG API 

with Vertex AI Vector Search

Let's use an illustrative example of a multi-cloud enterprise environment, where a substantial 

team of engineers required effective technical support to address diverse queries and issues. To 

meet this demand, a Retrieval-Augmented Generation (RAG) pipeline can be implemented, 

leveraging the RAG API to provide contextual technical answers by referencing a knowledge 

corpus encompassing historical incidents, FAQ documentation, video transcripts, and 

StackOverflow.

Step 1: Choose the Vector Database: The RAG Engine 
offers RagManagedDb as the default choice of a vector database, with the 
option to add additional Vector Databases. Experimenting with Vector AI 
Search, based on vector search technology developed by Google Research, 
was chosen for this implementation.

Step 2: Set up Vertex AI SDK: Before proceeding, install and configure the 

Vertex AI SDK to enable seamless integration with the RAG API and Vertex AI 

Vector Search:

pip install google-cloud-aiplatform

# Set up the SDK

aiplatform.init(project="your-project-id", 
location="your-region")

Ensure that you’ve set up authentication with Google Cloud and have the 

necessary permissions for Vertex AI and Matching Engine services.

Step 3: Create a Vector Search Index: A Vector Search index is where vector 

embeddings will be stored and queried. Criteria such as an empty Vector 

Search index, IndexUpdateMethod, distance measure type, and vector 

dimension must be met to ensure compatibility for similarity comparison.

To create a Vector Search index, following criteria must be met:

IndexUpdateMethod should be set to STREAM_UPDATE that allows to 

update and query the index in real time.

The distance measure type must be either DOT_PRODUCT_DISTANCE or 
COSINE_DISTANCE.

The vector dimension should match that of the embedding model used for the 

RAG corpus. This ensures the embeddings are compatible for similarity 

comparison. The code snippet is as follows:
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def vector_search_create_streaming_index(

    project: str, location: str, display_name: str, gcs_uri: Optional[str] = None

) -> aiplatform.MatchingEngineIndex:

    """Create a vector search index.

    Args:

        project (str): Required. Project ID

        location (str): Required. The region name

        display_name (str): Required. The index display name

        gcs_uri (str): Optional. The Google Cloud Storage uri for index content

    Returns:

        The created MatchingEngineIndex.

    """

    # Initialize the Vertex AI client

    aiplatform.init(project=project, location=location)

    # Create Index

    index = aiplatform.MatchingEngineIndex.create_tree_ah_index(

        display_name=display_name,

        contents_delta_uri=gcs_uri,

        description="Matching Engine Index",

        dimensions=100,

        approximate_neighbors_count=150,

        leaf_node_embedding_count=500,

        leaf_nodes_to_search_percent=7,

        index_update_method="STREAM_UPDATE",  # Options: STREAM_UPDATE, BATCH_UPDATE

    
distance_measure_type=aiplatform.matching_engine.matching_engine_index_config.DistanceMeasureTy
pe.DOT_PRODUCT_DISTANCE,

    )

    return index

Note: RAG API uses text-embedding-004 model as a default embedding model. 

Step 4: Create a Vector Search Index Endpoint: The endpoint provides a 

public-facing access point to your vector search index, allowing for easy 

retrieval of relevant contexts based on user queries. The code snippet is as 

follows:
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def vector_search_create_index_endpoint(
  project: str, location: str, display_name: str

) -> None:
  """Create a vector search index endpoint.

  Args:
    project (str): Required. Project ID
    location (str): Required. The region name
    display_name (str): Required. The index endpoint display name
  """
  # Initialize the Vertex AI client
  aiplatform.init(project=project, location=location)

  # Create Index Endpoint
  index_endpoint = aiplatform.MatchingEngineIndexEndpoint.create(
    display_name=display_name,
    public_endpoint_enabled=True,
    description="Matching Engine Index Endpoint",
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  print(index_endpoint.name)

Note: Use a descriptive display_name to help identify your endpoint in the Vertex AI console. Once the index is 

created, deploy it to an endpoint for public-facing access.

Step 5: Deploy the Index to the Endpoint: To enable nearest neighbour search, 

the index must be deployed to the endpoint for public-facing access, enabling 

efficient retrieval of relevant contexts.

def vector_search_deploy_index(
  project: str,
  location: str,
  index_name: str,
  index_endpoint_name: str,
  deployed_index_id: str,

) -> None:
  """Deploy a vector search index to a vector search index endpoint.

  Args:
    project (str): Required. Project ID
    location (str): Required. The region name
    index_name (str): Required. The index to update. A fully-qualified index
     resource name or a index ID. Example:
     "projects/123/locations/us-central1/indexes/my_index_id" or
     "my_index_id".
    index_endpoint_name (str): Required. Index endpoint to deploy the index
     to.
    deployed_index_id (str): Required. The user specified ID of the
     DeployedIndex.
  """
 # Initialize the Vertex AI client
  aiplatform.init(project=project, location=location)

  # Create the index instance from an existing index
  index = aiplatform.MatchingEngineIndex(index_name=index_name)

  # Create the index endpoint instance from an existing endpoint.
  index_endpoint = aiplatform.MatchingEngineIndexEndpoint(
    index_endpoint_name=index_endpoint_name
  )



Step 6: Create the RAG Corpus: Create the RAG corpus and associate it with 

the Vector Search instance as the Vector database, ensuring the necessary 

validations are performed to ensure correct setup.

Specify INDEX_ENDPOINT_NAME and INDEX_NAME while creating the corpus.

  # Deploy Index to Endpoint
  index_endpoint = index_endpoint.deploy_index(
    index=index, deployed_index_id=deployed_index_id
  )

  print(index_endpoint.deployed_indexes)

Note: The first deployment may take up to 30 minutes.

from vertexai.preview import rag
import vertexai

# TODO(developer): Update and un-comment below lines
# PROJECT_ID = "your-project-id"
# vector_search_index_name = "projects/{PROJECT_ID}/locations/{LOCATION}/indexes/{INDEX_ID}"
# vector_search_index_endpoint_name = 
"projects/{PROJECT_ID}/locations/{LOCATION}/indexEndpoints/{INDEX_ENDPOINT_ID}"
# display_name = "test_corpus"
# description = "Corpus Description"

# Initialize Vertex AI API once per session
vertexai.init(project=PROJECT_ID, location="us-central1")

# Configure embedding model (Optional)
embedding_model_config = rag.EmbeddingModelConfig(
  publisher_model="publishers/google/models/text-embedding-004"

)

# Configure Vector DB
vector_db = rag.VertexVectorSearch(
  index=vector_search_index_name, index_endpoint=vector_search_index_endpoint_name

)

corpus = rag.create_corpus(
  display_name=display_name,
  description=description,
  embedding_model_config=embedding_model_config,
  vector_db=vector_db,

)
print(corpus)
# Example response:
# RagCorpus(name='projects/1234567890/locations/us-central1/ragCorpora/1234567890',
# display_name='test_corpus', description='Corpus Description', embedding_model_config=...
# ...

Step 7: Import Files into the RAG Corpus: Using the ImportRagFiles API, 
import documents from Cloud Storage or Google Drive into the Vector Search 
index that will form the corpus, allowing for easy retrieval and embedding of 
documents. The code snippet is as follows: 



Step 8: Retrieve Relevant Contexts using RAG API: After importing the 
documents, relevant contexts can be retrieved using the 
RetrieveContexts API, allowing the RAG application to access semantic 
information stored in the index for answering specific queries. The code 
snippet is as follows:

from vertexai.preview import rag
import vertexai

# TODO(developer): Update and un-comment below lines
# PROJECT_ID = "your-project-id"
# corpus_name = "projects/{PROJECT_ID}/locations/us-central1/ragCorpora/{rag_corpus_id}"
# paths = ["https://drive.google.com/file/123", "gs://my_bucket/my_files_dir"] # Supports Google Cloud 
Storage and Google Drive Links

# Initialize Vertex AI API once per session
vertexai.init(project=PROJECT_ID, location="us-central1")

response = rag.import_files(
  corpus_name=corpus_name,
  paths=paths,
  chunk_size=512, # Optional
  chunk_overlap=100, # Optional
  max_embedding_requests_per_min=900, # Optional

)
print(f"Imported {response.imported_rag_files_count} files.")
# Example response:
# Imported 2 files.

from vertexai.preview import rag
import vertexai

# TODO(developer): Update and un-comment below lines
# PROJECT_ID = "your-project-id"
# corpus_name = "projects/[PROJECT_ID]/locations/us-central1/ragCorpora/[rag_corpus_id]"

# Initialize Vertex AI API once per session
vertexai.init(project=PROJECT_ID, location="us-central1")

response = rag.retrieval_query(
  rag_resources=[
    rag.RagResource(
      rag_corpus=corpus_name,
      # Optional: supply IDs from ̀ rag.list_files()`.
      # rag_file_ids=["rag-file-1", "rag-file-2", ...],
    )
  ],
  text="Hello World!",
  similarity_top_k=10, # Optional
  vector_distance_threshold=0.5, # Optional

)
print(response)
# Example response:
# contexts {
#  contexts {
#   source_uri: "gs://your-bucket-name/file.txt"
#   text: "....
#  ....



Step 9: Generate Content Using Vertex AI Gemini models: Make a call to the 
Vertex AI GenerateContent API, specifying the RAG_CORPUS_RESOURCE 
in the request to generate content using Generative AI models like Gemini. 

From vertexai.preview import rag
from vertexai.preview.generative_models import GenerativeModel, Tool
import vertexai

# TODO(developer): Update and un-comment below lines
# PROJECT_ID = “your-project-id”
# corpus_name = “projects/{PROJECT_ID}/locations/us-central1/ragCorpora/{rag_corpus_id}”

# Initialize Vertex AI API once per session
vertexai.init(project=PROJECT_ID, location=”us-central1”)

rag_retrieval_tool = Tool.from_retrieval(
  retrieval=rag.Retrieval(
    source=rag.VertexRagStore(
      rag_resources=[
        rag.RagResource(
          rag_corpus=corpus_name,
          # Optional: supply IDs from ̀ rag.list_files()`.
          # rag_file_ids=[“rag-file-1”, “rag-file-2”, …],
        )
      ],
      similarity_top_k=3, # Optional
      vector_distance_threshold=0.5, # Optional
    ),
  )

)

rag_model = GenerativeModel(
  model_name=”gemini-1.5-flash-001”, tools=[rag_retrieval_tool]

)
response = rag_model.generate_content(“Why is the sky blue?”)
print(response.text)
# Example response:
#  The sky appears blue due to a phenomenon called Rayleigh scattering.
#  Sunlight, which contains all colors of the rainbow, is scattered
#  by the tiny particles in the Earth’s atmosphere….
#  …

Conclusion

The process of implementing Retrieval-Augmented Generation (RAG) pipelines with 
Google Cloud’s RAG API demonstrates the utilization of advanced AI capabilities. By 
integrating the Vertex AI SDK and establishing a Streaming Vector Search index, 
organizations can effectively engage with the RAG Engine to store and retrieve vector 
embeddings. Deploying the index to a public-facing endpoint enables seamless access 
to the vector search index, facilitating the retrieval of relevant contexts. Additionally, the 
RAG API's capability to deliver detailed and contextually relevant responses to user 
queries, along with its robust management and embedding of content for retrieval, 
showcases its advanced functionality and potential to enhance information retrieval and 
content generation processes through generative models like Gemini.



Sample query and response from RAG API
Question: Why do I get a "curl: (6) Could not resolve host" or "ERR_NAME_NOT_RESOLVED" 
error when I try to access my website on Lightsail?

Model Response: 

"""The errors "curl: (6) Could not resolve host" or "ERR_NAME_NOT_RESOLVED" mean your 

browser can't find your website's IP address. Here's how to troubleshoot:

1. **Check Domain Registration and Nameservers:**

  - Use `whois your_domain` to check if your domain is registered.

  - Use `dig your_domain NS` or `whois your_domain | grep "Name Server"` to verify the 

nameservers are correct. Update them with your registrar if needed.

2. **Check if the Issue Is Local or Global:**

  - Try accessing your website from another network or device. If it works, the problem is with 

your local network or machine.

  - **Verify resolver configuration:** Check your local DNS resolver settings. On Windows, 

use `ipconfig /all`. On macOS or Linux, check `/etc/resolv.conf`. Ensure the DNS servers listed 

are correct and responsive.

3. **Check Hosts File:**

  - Incorrect entries in your hosts file (Windows: `C:\Windows\System32\drivers\etc\hosts`, 

macOS/Linux: `/etc/hosts`) can cause this error. Verify the entry for your domain has the 

correct IP address, or remove/comment it out if incorrect or unnecessary.

4. **Update Nameserver or Register Domain:**

 - If the domain is unregistered, register it and enter the nameservers provided by your 

hosting provider or DNS service.

 - If the nameservers are incorrect, update them with your domain registrar.

5. **Configure A Record:**

  - If the `dig +trace` command reaches your nameserver but doesn't return an A record (IP 

address), create or update the A record in your DNS settings (e.g. Lightsail DNS zone) to point 

to your instance's public IP address.

6. **Check Firewall Rules:**

  - Ensure your firewall allows inbound traffic on ports 80 (HTTP) and 443 (HTTPS). Check 

both Lightsail firewall rules and operating system-level firewalls (like UFW or iptables).

7. **Check Instance Health:**

 - If you get "connection timed out" errors, check your Lightsail instance's health and 

performance metrics to rule out server-side issues.



Advancing RAG 
Performance: A 
Comparative 
Evaluation of 
RAG API and 
Traditional RAG 
Approach
The evaluation of the RAG 
pipeline implementation using 
the RAG API and the traditional 
RAG approach revealed that 
the RAG API provided better 
Retriever and Generation 
metric scores, showcasing its 
robustness and improved 
performance. The Retriever 
functionality is made robust in 
RAG API that brings the 
google-quality search through 
Vertex AI Vector Search that 
delivers more relevant results 
from the content provided. 
This is made available in a 
configurable way wherein; we 
can operationalize the 
repeatability of RAG 
implementation for successive 
use cases. 

RAG API Traditional RAG

Output:

RAGResults

(

 4 RAG results,

 Metrics:

 {

 "overall_metrics": {

 "precision": 62.0,

 "recall": 47.8,

 "f1": 51.7

 },

 "retriever_metrics": 
{

 "claim_recall": 
73.4,

 "context_precision
": 90.0

 },

 "generator_metrics": 
{

 "context_utilizati
on": 61.7,

 "noise_sensitivity
_in_relevant": 24.0,

 "noise_sensitivity
_in_irrelevant": 0.0,

 "hallucination": 
14.1,

 "self_knowledge": 
6.2,

 "faithfulness": 
79.7

 }

 }

)

Output:

RAGResults

(

 4 RAG results,

 Metrics:

 {

 "overall_metrics": {

 "precision": 67.1,

 "recall": 43.5,

 "f1": 52.2

 },

 "retriever_metrics": 
{

 "claim_recall": 
26.2,

 "context_precision
": 60.0

 },

 "generator_metrics": 
{

 "context_utilizati
on": 93.9,

 "noise_sensitivity
_in_relevant": 5.6,

 "noise_sensitivity
_in_irrelevant": 6.2,

 "hallucination": 
21.1,

 "self_knowledge": 
36.9,

 "faithfulness": 
42.0

 }

 }

)
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